A few caveats: I ran these tests in Creative mode uusing MineCraft 1.6.2, Forge .871 and IC2 .216-experimental. These designs worked for me for at least one full cycle without issue and shouldn't be a problem but there's an off chance that they'll reduce their surroundings to a glowing glass crater. The last one is especially touchy. All designs from the Reactor Planner use MOX rather than Uranium but are otherwise as shown. Output was measured by both the Nuclear Control add-on's reactor info panel and by the power stored in an empty MFSU bank attached to each reactor. These two numbers agree very well with each other.
First off is a simple no-brainer using two single-cell fuel rods and a pair of advanced heat vents, one heat vent per fuel cell. At a temperature of 0 this lackluster plant generated a mere 2 MEU at 20 EU/tick. Yes, those numbers are right, MOX only seems to last half as long as conventional Uranium so if you burn it at room temperature you'll only get half the energy, albeit at the usual power. However, if you leave the heat vents out until the reactor has reached a temperature of 90,000, Hot-MOX the reactor, and then pop them in at the desired temperature, this design will output 14.2 MEU. That's 7.1 times more power, 3.5 times more energy, courtesy of MOX higher efficiency with temperature. This design is thermal neutral so once you have it heated just keep refueling.
This one's still pretty simple but I prefer this design over the equivalent quad core because the heat vent arrangement is simpler, requiring no heat exchangers. Yield at T=0: 6 MEU at 60 EU/tick. Yield at T=78,000: 50.6 MEU at 506 EU/tick, 8.4 times more power and 4.2 times more energy than Uranium. I'm confused why this lower temperature design had higher MOX thermal efficiency. This design is also thermal neutral.
Here's a slightly brawnier reactor using over-clocked heat vents . OCHVs can be used with Hot-MOX but need to have good cooling to keep them from melting. The single fuel cell in the upper left corner puts out just enough heat to maintain temperature. At T = 0 this reactor generated 16.7 MEU at 167 EU/tick. The reactor planner says it should be 165 EU/tick but the slight core heat that comes with using OCHVs gave the MOX a ~1% boost. At T = 50,000 this set-up generated 97.5 MEU at 975 EU/tick. 5.8 times more power and 2.9 times more energy than you'd get from Uranium. Not bad for a pair of quad cells. The downside to OCHVs is that the design isn't thermally neutral. The OCHVs continue to cool the reactor after the fuel has spent itself so automation to either pop out the OCHVs or refuel the reactor rapidly is necessary if you don't want to mess about baking it up to T every cycle.
The previous design also highlights the fundamental trade-off inherent in MOX fuel. Larger, more efficient cores require more heat vents, allowing less heat capacity plating, lower maximum safe temperatures and lower MOX thermal efficiency. The solution is not to use heat vents but more compact coolant cells or condensators.
This little CRCS model is for Shneekey . It's still drop-dead simple but that's Hot-MOX. You want lots of space to fill with heat capacity plating so you don't want much of anything else. You'll need to swap the coolant out when it gets toasty and automation will be your friend for that, but that's CRCS. The empty slot in the upper left corner is for an optional heat vent to prevent gradual accumulation of heat during coolant swaps. With 6 quad cores, this reactor puts out a fairly hefty 640 EU/tick even at room temperature. At T = 77,000 the reactor produced a very impressive string of craters where the MFSU bank had been. The nuclear information panel says that it was putting out 4538 EU/tick. I didn't have automation set up for this design so I only ran it for 1% of a cycle but the total final yield should have been ~454 MEU, which is consistent with the efficiency observed in other Hot-MOX reactors at this temperature.
One or two things that you might want to be aware of with regard to the Nuclear Control add-on for IC2 experimental.
- There's a glitch in power consumption for the remote thermal monitor. If you use transformer upgrades in it it will happily chew through as much power as it can find, burning through a lapotron crystal in a little over a minute. This can be crater-makingly pesky if you lose power to it during bake-up and your heat vents don't get inserted before Tcritical.
- At present, nuclear control doesn't read the time remaining for MOX properly and just displays it as 0 even when the reactor is cranking out the EU. Annoying if you're trying to figure out how long your reactor's been running but otherwise harmless.