Ceramics and glass
Lithium oxide is a widely used flux for processing silica, reducing the melting point and viscosity of the material and leading to glazes of improved physical properties including low coefficients for thermal expansion. Lithium oxides are a component of ovenware. Worldwide, this is the single largest use for lithium compounds. Lithium carbonate (Li2CO3) is generally used in this application: upon heating it converts to the oxide.
§Electrical and electronics
In the later years of the 20th century, owing to its high electrode potential, lithium became an important component of the electrolyte and of one of the electrodes in batteries. Because of its low atomic mass, it has a high charge- and power-to-weight ratio. A typical lithium-ion battery can generate approximately 3 volts per cell, compared with 2.1 volts for lead-acid or 1.5 volts for zinc-carbon cells. Lithium-ion batteries, which are rechargeable and have a high energy density, should not be confused with lithium batteries, which are disposable (primary) batteries with lithium or its compounds as the anode. Other rechargeable batteries that use lithium include the lithium-ion polymer battery, lithium iron phosphate battery, and the nanowire battery.
§Lubricating greases
The third most common use of lithium is in greases. Lithium hydroxide is a strong base and, when heated with a fat, produces a soap made of lithium stearate. Lithium soap has the ability to thicken oils, and it is used to manufacture all-purpose, high-temperature lubricating greases.
§Metallurgy
When used as a flux for welding or soldering, metallic lithium promotes the fusing of metals during the process and eliminates the forming of oxides by absorbing impurities. Its fusing quality is also important as a flux for producing ceramics, enamels and glass. Alloys of the metal with aluminium, cadmium, copper and manganese are used to make high-performance aircraft parts (see also Lithium-aluminium alloys).
§Other chemical and industrial uses
Lithium use in flares and pyrotechnics is due to its rose-red flame.
§Pyrotechnics
Lithium compounds are used as pyrotechnic colorants and oxidizers in red fireworks and flares.
§Air purification
Lithium chloride and lithium bromide are hygroscopic and are used as desiccants for gas streams. Lithium hydroxide and lithium peroxide are the salts most used in confined areas, such as aboard spacecraft and submarines, for carbon dioxide removal and air purification. Lithium hydroxide absorbs carbon dioxide from the air by forming lithium carbonate, and is preferred over other alkaline hydroxides for its low weight.
Lithium peroxide (Li2O2) in presence of moisture not only reacts with carbon dioxide to form lithium carbonate, but also releases oxygen. The reaction is as follows:
2 Li2O2 + 2 CO2 → 2 Li2CO3 + O2.
Some of the aforementioned compounds, as well as lithium perchlorate, are used in oxygen candles that supply submarines with oxygen. These can also include small amounts of boron, magnesium, aluminum, silicon, titanium, manganese, and iron.
§Optics
Lithium fluoride, artificially grown as crystal, is clear and transparent and often used in specialist optics for IR, UV and VUV (vacuum UV) applications. It has one of the lowest refractive indexes and the farthest transmission range in the deep UV of most common materials. Finely divided lithium fluoride powder has been used for thermoluminescent radiation dosimetry (TLD): when a sample of such is exposed to radiation, it accumulates crystal defects which, when heated, resolve via a release of bluish light whose intensity is proportional to the absorbed dose, thus allowing this to be quantified. Lithium fluoride is sometimes used in focal lenses of telescopes.
The high non-linearity of lithium niobate also makes it useful in non-linear optics applications. It is used extensively in telecommunication products such as mobile phones and optical modulators, for such components as resonant crystals. Lithium applications are used in more than 60% of mobile phones.
§Organic and polymer chemistry
Organolithium compounds are widely used in the production of polymer and fine-chemicals. In the polymer industry, which is the dominant consumer of these reagents, alkyl lithium compounds are catalysts/initiators. in anionic polymerization of unfunctionalized olefins. For the production of fine chemicals, organolithium compounds function as strong bases and as reagents for the formation of carbon-carbon bonds. Organolithium compounds are prepared from lithium metal and alkyl halides.
Many other lithium compounds are used as reagents to prepare organic compounds. Some popular compounds include lithium aluminium hydride (LiAlH4), lithium triethylborohydride (LiBH(C2H5)3). n-Butyllithium (C4H9Li) and tert-butyl lithium (C4H9Li) are commonly used as extremely strong bases called superbase.
§Military applications
[redacted]
§Nuclear[edit]
[redacted]
§Medicine
Main article: Lithium (medication)
Lithium is useful in the treatment of bipolar disorder. Lithium salts may also be helpful for related diagnoses, such as schizoaffective disorder and cyclic major depression. The active part of these salts is the lithium ion Li+. They may increase the risk of developing Ebstein's cardiac anomaly in infants born to women who take lithium during the first trimester of pregnancy.
Lithium has also been researched as a possible treatment for cluster headaches.
shameless copy from wiki, edited for readibility